Multiple second-messenger system modulation of voltage-activated calcium currents in teleost retinal horizontal cells.

نویسندگان

  • C L Pfeiffer-Linn
  • E M Lasater
چکیده

Two voltage-activated calcium currents, a transient T-type and a PL-sustained type, have been measured in isolated, cultured white bass horizontal cells. These two voltage-activated calcium currents were found to be modulated by two independent second-messenger systems. Furthermore, activation of either second-messenger system led to similar changes in calcium current activity. Activation of the cyclic AMP second-messenger pathway or the sn-1,2-diacylglycerol (DAG) second-messenger system resulted in a significant decrease in the amplitude of the transient current and a simultaneous large increase in the amplitude of the sustained current. Both second-messenger systems achieved their effects through protein phosphorylation. The cyclic AMP pathway resulted in the activation of protein kinase A (PKA) and the DAG pathway worked to activate protein kinase C (PKC). Two protein kinase inhibitors were analyzed in this study for their ability to inhibit second-messenger activated protein kinase activity and separate the two pathways. The peptide cyclic AMP-dependent protein kinase inhibitor and staurosporine were found to be nonspecific at high concentrations and inhibited both second-messenger pathways. At low concentrations however, staurosporine specifically inhibited only PKC, whereas adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase inhibitor was selective for PKA. Both second-messenger systems were activated by the neuromodulator, dopamine. Thus one agonist can initiate multiple second-messenger systems leading to similar changes in voltage-activated calcium current activity. The modulatory action on calcium currents produced by one second-messenger system added to the modulatory action resulting from activation of the other second-messenger system. The effect is to alter the magnitude of the horizontal cell calcium currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine modulates in a differential fashion T- and L-type calcium currents in bass retinal horizontal cells

White bass (Roccus chrysops) retinal horizontal cells possess two types of voltage-activated calcium currents which have recently been characterized with regard to their voltage dependence and pharmacology (Sullivan, J., and E. M. Lasater. 1992. Journal of General Physiology. 99:85-107). A low voltage-activated transient current was identified which resembles the T-type calcium current describe...

متن کامل

Mechanism linking NMDA receptor activation to modulation of voltage-gated currents in a retinal neuron

In this study, we investigated the mechanism that links activation of NMDA receptors to inhibition of voltage-gated sodium channels in isolated catfish cone horizontal cells. NMDA channels were activated in voltage-clamped cells incubated in low calcium saline or dialyzed with the calcium chelator, BAPTA, to determine that calcium influx through NMDA channels is required for sodium channel modu...

متن کامل

Repetitive light stimulation inducing glycine receptor plasticity in the retinal neurons.

Neurotransmitter receptor plasticity is a mechanism that can regulate the temporal and intensity encoding of a synapse. While this has been extensively studied as a mechanism of learning, less is known about such processes in sensory systems. This study examines modulation of glycine receptor function at the first synapse in the retina. It was found that horizontal cells, which are postsynaptic...

متن کامل

Activation of metabotropic glutamate receptors modulates the voltage-gated sustained calcium current in a teleost horizontal cell.

In the teleost retina, cone horizontal cells contain a voltage-activated sustained calcium current, which has been proposed to be involved in visual processing. Recently, several studies have demonstrated that modulation of voltage-gated channels can occur through activation of metabotropic glutamate receptors (mGluRs). Because glutamate is the excitatory neurotransmitter in the vertebrate reti...

متن کامل

Dopamine modulates the kinetics of ion channels gated by excitatory amino acids in retinal horizontal cells.

Upon exposure to dopamine, cultured teleost retinal horizontal cells become more responsive to the putative photoreceptor neurotransmitter L-glutamate and to its analog kainate. We have recorded unitary and whole-cell currents to determine the mechanism by which dopamine enhances ion channels activated by these agents. In single-channel recordings from cell-attached patches with agonist in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 1  شماره 

صفحات  -

تاریخ انتشار 1998